Nanofiber-expanded human umbilical cord blood–derived CD34+ cell therapy accelerates cutaneous wound closure in NOD/SCID mice

نویسندگان

  • Suman Kanji
  • Manjusri Das
  • Reeva Aggarwal
  • Jingwei Lu
  • Matthew Joseph
  • Vincent J Pompili
  • Hiranmoy Das
چکیده

Nanofiber-expanded human umbilical cord blood-derived CD34(+) cell therapy has been shown to have potential applications for peripheral and myocardial ischaemic diseases. However, the efficacies of expanded CD34(+) cell therapy for treating cutaneous wounds and its mechanisms of action have yet to be established. Using an excisional wound model in non-obese diabetic/severe combined immune deficient mice, we show herein that CD34(+) cells accelerate the wound-healing process by enhancing collagen synthesis, and increasing fibroblast cell migration within the wound bed. Concomitantly, reduced levels of matrix metalloproteinase (MMPs) such as MMP1, MMP3, MMP9 and MMP13 were detected in the wound beds of animals treated with CD34(+) cells compared with vehicle-treated controls. CD34(+) cells were found to mediate enhanced migration and proliferation of dermal fibroblast cells in vitro. Moreover, CD34(+) cells secrete collagen in a serum-deprived environment. In mechanistic studies, co-culture of CD34(+) cells with primary skin fibroblasts increased the expression of collagen1A1, a component of type 1 collagen, and decreased the expression of MMP1 in fibroblast cells in the presence of a proteasome inhibitor. Finally, CD34(+) cell-mediated functions were transcriptionally regulated by the c-Jun N-terminal kinases pathway. Collectively, these data provide evidence of therapeutic efficacy and a novel mechanism of nanofiber-expanded CD34(+) cell-mediated accelerated wound healing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofiber-expanded human umbilical cord blood-derived CD34+ cell therapy accelerates murine cutaneous wound closure by attenuating pro-inflammatory factors and secreting IL-10.

Nanofiber-expanded human umbilical cord blood-derived CD34+ cell therapy is under consideration for treating peripheral and cardiac ischemia. However, the therapeutic efficacy of nanofiber-expanded human umbilical cord blood-derived (NEHUCB) CD34+ cell therapy for wound healing and its mechanisms are yet to be established. Using an excision wound model in NOD/SCID mice, we show herein that NEHU...

متن کامل

Human Umbilical Cord Blood-Derived CD34+ Cells Reverse Osteoporosis in NOD/SCID Mice by Altering Osteoblastic and Osteoclastic Activities

BACKGROUND Osteoporosis is a bone disorder associated with loss of bone mineral density and micro architecture. A balance of osteoblasts and osteoclasts activities maintains bone homeostasis. Increased bone loss due to increased osteoclast and decreased osteoblast activities is considered as an underlying cause of osteoporosis. METHODS AND FINDINGS The cures for osteoporosis are limited, cons...

متن کامل

Both CD34+38+ and CD34+38- cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion.

Human hemopoietic stem cells (HSC) have been shown to engraft, differentiate, and proliferate in the hemopoietic tissues of sublethally irradiated NOD/LtSZ scid/scid (NOD/SCID) mice. We used this model to study homing, survival, and expansion of human HSC populations from different sources or phenotype. We observed that CD34+ cells homed specifically to bone marrow (BM) and spleen, but by 3 day...

متن کامل

Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice.

Understanding the repopulating characteristics of human hematopoietic stem/progenitor cell fractions is crucial for predicting their performance after transplant into high-risk patients following high-dose therapy. We report that human umbilical cord blood cells, 78% to 100% of which express the hematopoietic progenitor cell surface marker CD34, can consistently engraft, develop, and proliferat...

متن کامل

Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors.

The efficiency of gene transfer into human hematopoietic stem cells by oncoretroviral vectors is too low for effective gene therapy of most hematologic diseases. Retroviral vectors based on the nonpathogenic foamy viruses (FV) are an alternative gene-transfer system. In this study, human umbilical cord blood CD34(+) cells were transduced with FV vectors by a single 10-h exposure to vector stock...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2014